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Introduction

• Star formation and structure formation in galaxies, at least in its early 

phases, is governed by gravitational instability

• Highly turbulent and clumpy high-redshift galaxy

(Elmegreen & Elmegreen 2005, Elmegreen et al., 2008)

– Accretion from intergalatic medium can have high impact velocity

• ~0.4 times the circular speed if the gas falls in along cosmological filaments (Keres

et al. 2005)

• A possible source of pressure-confinement for gas rich disk

– Clumpy disks show constant scale height as a function of disk radius

:Polytropic relation may hold 



Previous studies on GI of flattened systems

• Axisymmetric stability of rotating disk with vertical stratification 

(Goldreich & Lynden-Bell, 1965)

– Qc = 0.676 for isothermal gas disk

• Stability of shock-compressed layers (Elmegreen & Elmegreen, 1978)

– Compressed gaseous slabs formed by

• Shock waves from SN explosions, collisions of molecular clouds, expanding 

fronts of HII

– Saturation of the critical wavelength on the order of the layer thickness

• Stability of a strongly compressed layer (Lubow & Pringle, 1993)

– In the limit of strong external pressure, unstable mode shows essentially 

incompressible features

– But not clear physical explanation for why they become unstable

• Numurical simulations of compressed layer (Umekawa et al., 1999)

– Fragmentation of unstable disk patch into Jeans-stable Bonnor-Ebert 

spheres?



Purpose of study

• Stability of vertically stratified rotating disk (with 

polytropic EOS)

• Clarify the effect of pressure confinement on GI

• Obtain stability criterion for rotating pressure-

confined disks



Equilibrium Model



System description

• Initial configuration

– Disk in vertical hydrostatic equilibrium with truncation

– Differential rotation accomplished by radial gravitational field

• Shearing box approximation

– A local co-rotating Cartesian reference frame with angular velocity Ω0

– |x|, |y| << R0 (distance from rotation axis)

– With local shear rate

– Local epicyclic frequency

– Background flow



Relevant fluid equations 

• Continuity equation

• Momentum equations

• Poisson’s equation

• Conservation of entropy (adiabatic condition)

– γ : adiabatic index



Vertical structure of a self-gravitating polytropic disk

• Hydrostatic equilibrium

• Adopt polytropic relation with polytropic index n (Γ = 1 + 1/n)

• Transform the density and pressure into dimensionless form



• Define Dimensionless gravitational acceleration (or surface 

density as a Lagrangian variable)

with scale height defined by

• It is straight forward to show that

and from Poisson’s equation

H: Characteristic height at which density of the disk drops 

significantly relative to the value at the midplane

Vertical structure of a self-gravitating polytropic disk



Vertical structure of a self-gravitating polytropic disk

• Integrating from μ=0 (Θ = 0 ), we obtain

Enable us to do analytic study

(Kim,  1990, undergraduate thesis)





Density structure  

• Density structure

– Polytropic index Γ ≡ 1 + 1/n determines the stiffness of layer

– Disks with Γ > 1 have finite extent

– Disks with Γ ≤ 1 extend to infinity ( z → ∞ as μ → 1)

• Stiffness polytropic EOS 

– Stiff EOS: large Γ

– Small changes in density provide strong pressure support against 

gravity

– In the limit of large Γ, the structure resembles that of a homogeneous 

incompressible disk



Pressure confinement by rarefied external medium

• Assume that the layer is truncated and bounded by an external presssure

Pext at z = ±a (μ = ±A)

• The total vertical column density

• Parameter A represents the degree of pressure confinement

• A strongly compressed layer

(Pext >> GΣ0
2 , A → 0) has

nearly uniform density structure

(AH : effective thickness of layer)

Cut-offs at z = ± a



Method of Linear Analysis



Linearization

• Linearized equations are

• Note that we do not consider convective mode

– Polytropic index Γ = 1 + 1/n = γ adiabatic index



Axisymmetric perturbation

• Consider axisymmetric perturbations of the form

• It is convenient to introduce h1, ξ1

and express the quantities in a dimensionless form:
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Note that we only consider 

symmetric deformation of 

surfaces
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Perturbation equations in non-dimensional form

• After non-dimensionalization, we obtain

– A set of equations that is equivalent to a set of four 1st order ODE

• Given A, k, and κ0
2 , we numerically solve for ω2 along with 

appropriate boundary conditions



Boundary and symmetry conditions

• Free-surface boundary condition at z = a ( μ = A )

– Lagrangian pressure perturbation vanishes

• Potential at z = a

– Gauss’s theorem gives potential difference

• We only consider symmetric modes(sausage-type) which are subject to GI



Numerical Method

• Aim to compute dispersion relation 

• Given k, A, κ0
2 

• Fix ξ1z|a=1 and guess ψ1|a, ω
2 to obtain the values of h1, ξ1z, ψ1, and dψ1/dz

at μ = A using the boundary conditions

• Integrate the equations using RK4 method from μ = A to μ = 0

• Check whether the symmetry condition holds, i.e.,

• Equivalent to finding a zero of a mapping

• Numerically compute derivatives(Jacobian) using different guesses
– (Newton-Rhapson’s method)

• Solutions corresponding to nearby points obtained in succession



Results of Linear Analysis

(Isothermal only)



Dispersion relation (non-rotating isothermal case)



Unstable mode of pressure-confined disk

• It is gravitationally unstable: gravity defeats pressure gradient force

• While lateral streamlines produce negative horizontal velocity gradient at the center 

(convergent), the behavior of fluid is nearly incompressible as it is counterbalanced 

by positive vertical velocity gradient (divergent)

• Pertubed gravity is due almost entirely to surface displacement of gravitating matter 

at z = ±a



Distortional type of GI

• The full perturbed surface density consists of two parts

• It can be analytically shown that the gravitational potential due to the first 

two terms on the RHS is (for symmetric mode)

• Note that incompressible fluid has only the first two terms

• For disks with 0 < A < 1, we can distinguish two different source of the 

perturbed gravity using the above equation from the numerically obtained 

eigenfunction ψ1

Due to surface distortion Density perturbation



Gravitationally unstable surface gravity wave

• In 3D disks, p, r, g, and f-mode can occur

– p-mode: density perturbations due to compressibility, sound wave

– r-mode: Coriolis force, inertial wave

– g-mode: buoyancy causes convective motion (not explored in this study)

– f-mode: surface gravity wave like surface gravity waves in the ocean

• Jeans instability is due to compressibility

• For a non-rotating incompressible gas disk whose both surfaces are allowed 

to move freely, only f-mode is excited

– Only symmetric f-mode is unstable

• Dispersion relation for A → 0 (or incompressible disk) is

• (Compare the above case with ocean surface waves) 

gravity due to surface 

distortion



Nature of instability(isothermal non-rotating case)



Comparison with simulations by Umekawa et al. (1999)

• 2D hydrodynamic simulations of a self-gravitating isothermal slab with pressure 

confinement

• Linearly growing stage: agrees well with the predictions from linear theory

• Nonlinear stage

– A  ≤ 0.5 fragment into stable clumps, the mass of which smaller than the Jeans mass

– A  ≥ 0.6 the Jeans instability creates dense collapsing clumps

• In concordance with the criterion given by linear analysis



Nature of instability(isothermal non-rotating case)



Effect of rotation

Though not exact in 3D, rotation changes the pure GI by 

subtracting the square of the epicyclic frequency from the 

square of the growth rate derived without rotation

(Safronov, 1960)



Stability criterion - Toomre’s Q parameter

• Local dispersion relation for axisymmetric perturbation in a rotating

razor-thin disk

• The stability properties of gas disks are often expressed in terms of

the Toomre Q-parameter (Toomre 1964)

• Qc = 0.676 for isothermal gas disk with vertical stratification

(Goldreich & Lynden-Bell, 1965, Kim & Ostriker, 2002)

: the disk is vigorously unstable and can 

fragment into self-gravitating clumps



Stability criterion for a pressure-confined

self-gravitating layer

• Recall that Σ0 = 2ρ00HA, if we use Toomre’s Q:

• We require κ0
2 ~ Gρ00 for stability regardless of the strength of 

external pressure

• Q diverges for distortional type of instability

• It is more natural to define Q` as a stability criterion

• For pressure-confined disks, we need compare only two parameters 
because the sound speed of the disk is determined by hydrostatic 
condition



Goldreich & Lynden-Bell’s result (Qc = 0.676)

Incompressible limit



Summary

• Pressure confinement by a rarefied external medium

– Reduces the ratio of disk sound-crossing time (~ a/cs) to gravitational 
free-fall time ( ~1/√Gρ00 )

– Thus determine the “hotnesss” of the disk

– In the limit of strong compression, the disk has no vertical structure

• The nature of GI in compressed layer

– Essentially due to surface distortion

– Surface gravity wave can be unstable due to self-gravity

– Jeans instability and distortional type of instability occur together for 
moderately confined layer

• Local axisymmetric stability of pressure

– Rotation vertically shifts dispersion diagram

– Better to use stability parameter Q`=κ0/√(2πGρ00 )


