COSMIC RAY SPECTRUM IN SN Ia REMNANTS

Hyesung Kang Pusan National University, KOREA

SN Ia (15%): low mass progenitor → WD in close binary system explosion into uniform ISM Si lines, no H lines

Core collapse SN: explosion into stellar wind bubble
II (70%) : massive progenitors with H envelope
Ib (15%): more massive progenitors that lost H envelope (no H lines)

Ic: most massive progenitors that lost both He and H envelopes (no H & He lines)

Phases of Shell-type SNRs

- Supernova explosion ejecta $V \sim 10^4$ km/s
- Free expansion ejecta mass > swept-up mass
- Adiabatic or Sedov swept-up mass > ejecta mass
- Snow-plow or Cooling shock front cools, interior also cools
- **Disappearence** remnant slows to speed of the random velocities in the surrounding medium, merges with ISM

CR acceleration occurs mostly during free expansion and early Sedov stages (t< several 1000 years)

Broadband
spectrum of
SNRs- CR e + B field → Synchrotron (radio – X-ray)
- thermal & nonthermal bremsstrahlung
- CR p + p→ π⁰ decay → 100 GeV γ-ray
- CR e + CMBR → Inverse Compton scattering →TeV γ-ray

Provide observational evidence and constraints for CR acceleration.

- thin filaments of nonthermal X-ray indicating fast synchrotron cooling
- spectrum: synchrotron continuum
- **B** ~ a few 100 μG (mag. field amplificat., Bell & Lucek 2000, Bell 2004)
- CR electrons with $E_{ele} \sim a$ few 100 TeV

HESS γ-ray image of SN 1006 Acero et al. 2010

Model fitting $\rightarrow \pi 0$ gamma dominates over IC scattering

Colour image: H.E.S.S.

111.75 111 Galactic Longitude (deg.) H.E.S.S. TeV image Remnants from Core collapse SNe

- RXJ1713

- Velar Jr.

- G347.3

Leptonic (electron IC) vs. Hadronic (p-p coll. $\rightarrow \pi^0$ decay) for TeV γ -ray ?

Evidence for the acceleration of protons.

KNAG2019

Diffusion-Convection Eq with wave drift & dissipation

$$\frac{\partial f}{\partial t} + (u + u_w) \frac{\partial f}{\partial x} = \frac{1}{3} \frac{\partial}{\partial x} [(u + u_w)] p \frac{\partial f}{\partial p} + \frac{\partial}{\partial x} [\kappa(x, p) \frac{\partial f}{\partial x}] + Q(x, p)$$
where $u_w = v_A$ in upstream, $u_w = 0$ in downstream,
 $v_A = B / \sqrt{4\pi\rho}$ is Alfven speed.
 $W = -v_A \frac{\partial P_c}{\partial r}$: Gas heating due to wave disspation

$$\frac{P_c}{V_A} = \frac{U_1}{\sqrt{V_A}} = \frac{V_A}{\sqrt{V_A}}$$
Waves drift upstream with $v_A = u_w$
- Wave dissipate energy & heat the gas.
- CRs are scattered and isotropized in the wave frame rather than the gas frame $\Rightarrow u + u_w$
 \Rightarrow less efficient acceleration

Prediction of DSA theory in test particle limit

(when non-linear feedback due to CR pressure is insignificant)

$$\frac{\Delta p}{p} \sim \frac{u_1 - u_2}{v}, \ p_{esc} = \frac{u_2}{v} (\text{escape prob.}) \Rightarrow f(p) \propto p^{-q}$$

$$q_{test} = \frac{3u_1}{u_1 - u_2} \rightarrow 4 \text{ for strong shocks} \qquad f(p) \propto p^{-4} \Rightarrow N(E) \propto E^{-2}$$
Considering
Alfvenic drift in
$$q_{test} = \frac{3(u_1 - v_A)}{u_1 - v_A - u_2} > 4, \text{ softer than } p^{-4}$$

If DSA is efficient \rightarrow shock structure is modified by CR pressure.

$$q(p) \approx \frac{3(U(p) - \upsilon_A)}{U(p) - \upsilon_A - u_2}$$

U(p) is the precursor velocity that particles with p experience.

Test-particle power-law slope with Alfvenic Drift effect

For $V_s \le 2.3 \times 10^3$ km/s ($M_s \le 15$): test-particle slope can be softer than 4 in the hot phase of ISM

Recall $J(E) \propto E^{-2.7}$: all ptl spectrum at Earth (TRACER) with mean propagation length $\Lambda \propto E^{-0.6}$ source spectrum at SNRs: $N(E) \propto E^{-\alpha}$, $\alpha = q - 2 \approx 2.3 - 2.4$ (Ave et al 2009) Also γ - ray spectrum favors $\alpha \approx 2.3$ in some SNRs (eg. Cas A, *Fermi* LAT 2009)

Phenomenological Model for Thermal Leakage Injection

CRASH code in 1D spherical geometry

in a co-expanding frame which expands with the forward shock.

$$\frac{\partial \tilde{\rho}}{\partial t} + \frac{1}{a} \frac{\partial (\upsilon \tilde{\rho})}{\partial x} = -\frac{2}{ax} \tilde{\rho}\upsilon$$

$$\frac{\partial (\tilde{\rho}\upsilon)}{\partial t} + \frac{1}{a} \frac{\partial (\tilde{\rho}\upsilon^{2} + \tilde{P}_{g} + \tilde{P}_{c})}{\partial x} = -\frac{2}{ax} \tilde{\rho}\upsilon^{2} - \frac{\dot{a}}{a} \tilde{\rho}\upsilon - \ddot{a}x\tilde{\rho}$$

$$\frac{\partial (\tilde{\rho}\tilde{e}_{g})}{\partial t} + \frac{1}{a} \frac{\partial (\tilde{\rho}\tilde{e}_{g}\upsilon + \tilde{P}_{g}\upsilon + \tilde{P}_{c}\upsilon)}{\partial x} = -\frac{\upsilon}{a} \frac{\partial \tilde{P}_{c}}{\partial x} - \frac{2}{ax} (\tilde{\rho}\tilde{e}_{g}\upsilon + \tilde{P}_{g}\upsilon)$$

$$-2\frac{\dot{a}}{a} \tilde{\rho}\tilde{e}_{g} - \ddot{a}x\tilde{\rho}\upsilon - \tilde{L}(x,t)$$

Diffusion Convection Equation for f(r, p, t) $\frac{\partial \tilde{g}}{\partial t} + \frac{\upsilon - u_w}{a} \frac{\partial \tilde{g}}{\partial x} = \left[\frac{1}{3ax} \frac{\partial}{\partial x} (x^2(\upsilon - u_w)) + \frac{\dot{a}}{a}\right] \left(\frac{\partial \tilde{g}}{\partial y} - 4\tilde{g}\right) + 3\frac{\dot{a}}{a}\tilde{g} + \frac{1}{a^2x^2} \frac{\partial}{\partial x} (x^2\kappa \frac{\partial \tilde{g}}{\partial x})$

19

x = r / a: co-moving coordinate, a = expansion factor, $y = \ln p$ 2010-10-23 KNAG2010

Numerical Tool: CRASH Code (Kang et al. 2001)

Bohm type diffusion: $\kappa(p) \propto p$

- wide range of diffusion length scales to be resolved: $l_{diff} = \kappa(p) / u_s$

from $p_{inj}/mc(\sim 10^{-2})$ to outer scales for the highest p_{max}/mc (~10⁶)

1) Shock Tracking Method (Le Veque & Shyue 1995)

- tracks the subshock as an exact discontinuity
- 2) Adaptive Mesh Refinement (Berger & Le Veque 1997)
 - refines region around the subshock with multi-level grids

Model Parameters for Type Ia Supernova Remnants

- Initial Conditions for the uniform ISM

$$r_s = \xi_s t^{2/5}$$
, $u_s = \frac{2}{5} \xi_s t^{-3/5}$, Sedov Similarity Solution at $t = 0.5$

-Supernova Ia parameters: $E_o = 10^{51} \text{ erg}$, $M_{SN} = 1.4 M_{sun}$

- Bohm - type Diffusion

$$\kappa(p) = (\frac{3.0 \times 10^{22}}{B} \text{ cm}^2/\text{s}) \frac{p}{mc}$$
 with $B = 5 - 30 \mu \text{G}$

- thermal leakage injection model $\varepsilon_B = 0.2 - 0.25$

 Table 1. Model Parameters

Model ^a	n_H (ISM)	T_0	E_0	B_{μ}	r_o	t_o	u_o	P_o
	(cm^{-3})	(K)	(10^{51} ergs)	$(\mu { m G})$	(pc)	(years)	(10^4 km s^{-1})	$(10^{-6} \mathrm{erg} \ \mathrm{cm}^{-3})$
WISM	0.3	3.3×10^4	1.	30	3.19	255.	1.22	1.05
MISM	0.03	10^{5}	1.	30	6.87	549.	1.22	1.05×10^{-1}
HISM	0.003	10^{6}	1.	5	14.8	1182.	1.22	1.05×10^{-2}

The shock Mach number is the key parameter that determines CR acceleration.

Warm-phase ISM: high Mach number shock, efficient acceleration intermdiate-phase ISM: Hot-phase ISM: low Mach number shock, inefficient acceleration

Efficient Acceleration Case

$$n_{ISM} = 0.3 \text{ cm}^{-3}$$
$$B_0 = 30 \mu \text{G}$$
$$p_{max} = 10^6 \text{ GeV/c}$$
$$\rho_2 / \rho_0 \approx 8$$
$$\rho_1 / \rho_0 \approx 2$$

Normalization Constants $r_o = 3.19 \text{pc},$ $t_o = 255 \text{ yrs},$ $u_o = 1.22 \times 10^4 \text{ km/s}$ $\rho_o = 7.0 \times 10^{-25} \text{ g/cm}^3,$ $P_o = 1.05 \times 10^{-6} \text{ erg/cm}^3,$

warm ISM: $n_H = 0.3 \text{ cm}^{-3}$, $T_o = 3 \times 10^4 \text{ K}$, $M_s \approx 300$

WISM vs. **HISM**
$$\varepsilon_{\rm B}$$
= 0.2 vs. 0.25

efficient case (dashed lines) $\xi \approx 10^{-3} (\varepsilon_B = 0.25)$ $\rho_2 / \rho_0 \approx 4 - 8$ $P_c / \rho_0 u_s^2 \approx 0.1 - 0.4$

inefficient case (solid line) $\xi \approx 10^{-4} (\varepsilon_{\rm B} = 0.2)$ $\rho_2 / \rho_0 \approx 4 - 6$ $P_c / \rho_0 u_s^2 < 0.05$ test - particle - like

CR injection fraction

$$\xi(t) = \frac{\int 4\pi r^2 \mathrm{dr} \int 4\pi f(p, r, t) p^2 \mathrm{dp}}{\int 4\pi r_s^2 n_0 u_s \mathrm{dt}}$$
KNAG2010

CR spectrum at shock & Volume integrated spectrum Inefficient solutions: low injection rate, test-particle

CR spectrum at shock & Volume integrated spectrum Efficient solutions: high injection rate, modified

KNAG2010

In Type Ia SNRs, $\pi 0$ decay γ –rays dominate over **Electron IC scattering.**

$$K_{e/p} = 10^{-2}$$

Edmon, Kang, Jones, Ma 2010

30

25

warm ISM: $n_H = 0.3 \text{ cm}^{-3}$, $T_o = 3 \times 10^4 \text{ K}$, $M_s \approx 300$

 $\log[\nu (Hz)]$

20

15

10

28

Nonthermal radiation from SN1006 (Type Ia): HESS observation

Confirmation of CR proton acceleration at SNR

Energy Conversion

KNAG2010

SUMMARY

- With amplified B field, Galactic CRs up to

 $E_{\text{max}} \approx Z \cdot 10^{15.5} \text{eV}(\frac{B}{30 \mu G})$ can be accelerated by SNRs.

- Alfvenic drift softens the CR spectrum. $q_{test} = \frac{3(u_1 v_A)}{u_1 v_A u_2} > 4$
- -The shock Mach number is the key parameter that determines CR acceleration.
- -SNRs inside hot-phase ISM:

for $\varepsilon_{\rm B} \sim 0.2$: $\xi \approx 10^{-4}$, $N(E) \propto E^{-2.3}$, $E_{CR} / E_0 \approx 5 - 10\%$ can reconcile with observed $J(E) \propto E^{-2.7}$

-SNRs inside warm-phase ISM: too efficient !

for $\mathcal{E}_{\rm B} \sim 0.2$: $\xi \approx 10^{-4}$, $N(E) \propto E^{-1.8}$, $E_{CR} / E_0 \approx 35\%$

- If $K_{e/p} \sim 10^{-4}$, $B_1 = 30 \mu G$, $B_2 \sim 150-200 \mu G$, $\pi 0$ decay γ -rays dominate over electron IC scattering.

 $t \approx 4000 \, yrs$ $B_d \approx 130 \, \mu G, B_u \approx 65 \, \mu G$ $12 < n_{ISM} < 40 \, cm^{-3}$ $E_{max} \approx 700 \, \text{TeV}$ $E_{SN} \approx 2 \times 10^{51} \, \text{ergs}$

 $t \approx 1600 \text{ yrs}$ $B_d \approx 130 \mu G, B_u \approx 65 \mu G$ $n_{ISM} \approx 300 \text{ cm}^{-3}$ $\sigma \approx 6.3 \text{ (CR modified)}$ $E_{max} \approx 100 \text{ TeV}$ $E_{SN} \approx 1.8 \times 10^{51} \text{ ergs}$ $\gamma \text{-ray detection only}$ in high density environment (wind driven shell or molecular clouds)} KNAG2030

Figure 1: Spatially integrated spectral energy distributions of RX J1713-3946 [7]. The ATCA radio data, ASCA X-ray data, EGRET spectrum of 3EG J1714-3857, CANGAROO data and H.E.S.S. data from ([2]),

$$B_2 \approx 100 - 300 \,\mu\text{G}$$

 $K_{e/p} \approx (1 - 5) \times 10^{-4}$

SNR	B _{dw} (μG)	K _{ep}	B _{dw} (μG)	K _{ep}
RX J1713	100	8 · 10^-5	126	1 · 10^-4
SN1006	97	5 · 10^-4	150	4 · 10^-4
Tycho	270	9 · 10^-5	350 – 412	5 · 10^-4
Kepler			340	1.3 · 10^-4
Cas A			250 – 390	
RCW 86			75 – 145	

Morlino et al.

Berezhko & Voelk