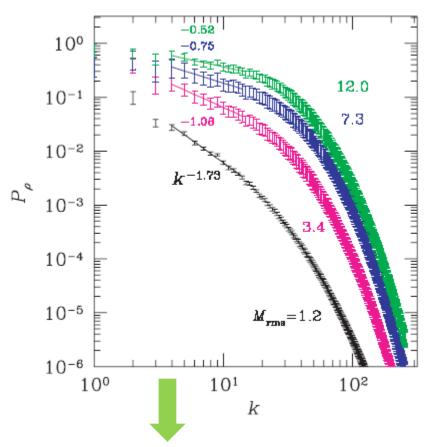

Turbulence in Molecular clouds : Observation versus Simulation

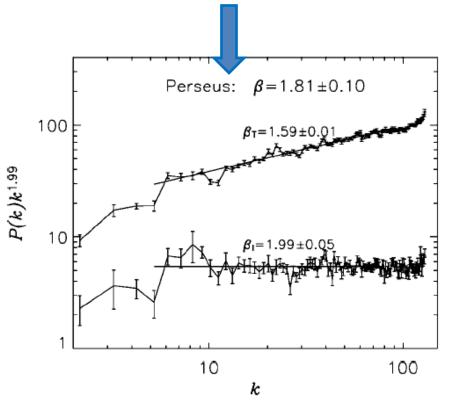

Hyunjin Cho, Hyesung Kang(PNU), Dongsu Ryu(CNU), Jongsoo Kim(KASI) & Jungyeon Cho(CNU)

> Oct 22, 2010 KNAG meeting

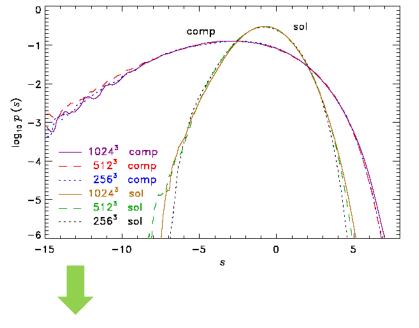

Interstellar Turbulence

- Observation and Numerical Simulation indicate ISM has turbulent structure.
- → ISM turbulence plays an important role in star and galaxy formation.
- → Very complex, unpredictable environments PDF, SF, PS etc

Recent Studies of Astrophysical Turbulence



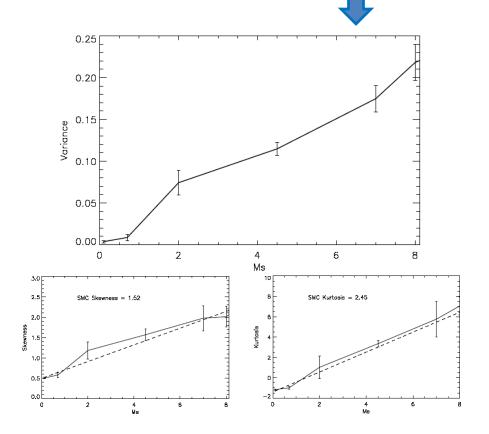
Kim & Ryu (2005)


1d & 3d compressible HD turbulence simulations show the density power sp ectrum becomes shallower as the rms Mach number increases.

✤Padoan et. al. (2006)

Power Spectrum Study of Perseus Molecular Cloud based on VCA method. Power spectrum is consistent with previous HI, CO studies , Super-Alfvenic turbulence simulations.

Recent Studies of Astrophysical Turbulence II



Federrath et. al. (2010)

Compressive mode yields stronger turbulence than solenoidal mode, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs).

✤Burkhart et. al. (2009)

spatial variations of turbulence in the Small Magellanic Cloud (SMC) by applying several statistical methods

Purpose of This Study

Many advances in both observations and numerical simulation models have provided new insights into the origins and evolution of the interstellar turbulence.

- Most of recent statistical methods require large datasets with large spatial or velocity range. However, there is still disagreements of these results.
- We attempt to improve statistical relation for various properties of turbulence using observational data. We also investigate the consistency of these result and the simulation result.

Galactic Ring Survey

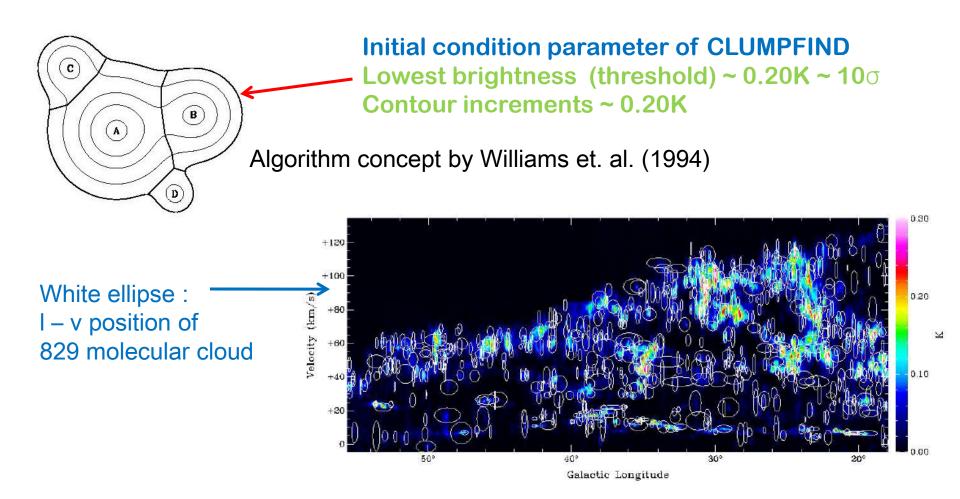
Jackson et. al. (2006)

The Boston University - FCRAO Galactic Ring Survey (GRS) using 14m telescope, ^{13}CO (J=1 \rightarrow 0) transition is 5kpc ring survey of the inner Galaxy

Survey	GRS	UMSB ^a	Bell Labs ^b	Columbia/CfA ^c
Dates Transition $(J = 1 \rightarrow 0)$ T_R^* sensitivity per km s ⁻¹ channel (K) Velocity resolution (km s ⁻¹) Longitude coverage (deg) Latitude coverage (deg) LSR velocity range (km s ⁻¹) Angular resolution (arcsec) Angular sampling (arcsec) Number of spectra	1998-2005 ¹³ CO 0.27 0.21 18 to 55.7 -1 to 1 -5 to 135 46 22 1,993,522	$ \begin{array}{r} 1981 - 1984 \\ $	1978–1992 ¹³ CO 0.1 0.68 -5 to 117 -1 to 1 -250 to 250 103 180 73,000	$1980-12 CO \\ 0.18 \\ 0.65 \\ 10 to 70 \\ -6 to 6 \\ -140 to 140 \\ 450 \\ 225-450 \\ 54,000$
Total survey region (deg ²)	75.4	172.2	244	660

A COMPARISON OF CO SURVEYS OF THE FIRST GALACTIC QUADRANT

^a From Sanders et al. (1986).


^b From Lee et al. (2001).

^c From Dame et al. (2001).

Better Column density tracer Excellent temperature sensitivity Higher spectral resolution

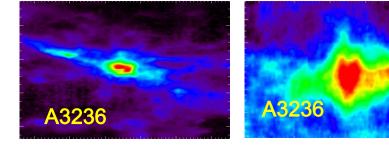
Selection of Molecular Cloud in GRS survey

Rathborne et. al. (2009) identified 829 molecular clouds and 6124 clump s in Galactic Ring Survey using the CLUMFIND algorithm.

Molecular Cloud Catalogue in GRS survey

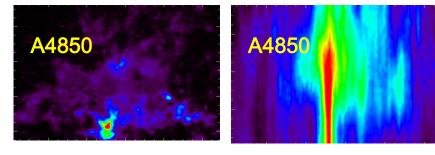
Cloud	\mathbf{P}	eak	V_{LSR}	ΔV	T_{mb}	Cen	troid	а	ь	PA	Α	Tav	I_{peak}	I_{total}	$N(H_2)$	Flag
GRSMC	l	ь				l	ь						-			
	(°)	(°)	(km s ⁻¹)	(km s ⁻¹)	(K)	(°)	(°)	(°)	(°)	(°)	(deg^2)	(K)	(K km s ⁻¹)	$(K km s^{-1} deg^2)$	$(\times 10^{22} \text{ cm}^{-2})$	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
G053.59 + 00.04	53.59	0.04	23.7	1.99	5.75	53.69	0.01	0.52	0.19	16	0.27	1.90	36.5	0.95	1.8	-
G029.89-00.06	29.89	-0.06	100.7	5.09	5.46	29.99	-0.17	0.44	0.35	-46	0.46	2.49	87.6	3.12	4.3	-
G049.49 - 00.41	49.49	-0.41	56.9	9.77	5.25	49.57	-0.39	0.38	0.23	-21	0.18	2.18	193.2	1.64	9.5	Y
G018.89 - 00.51	18.89	-0.51	65.8	2.80	5.17	18.80	-0.56	0.31	0.31	-47	0.29	2.31	57.5	1.51	2.8	-
G030.49-00.36	30.49	-0.36	12.3	4.56	4.98	30.66	-0.39	0.47	0.24	-28	0.22	1.70	17.5	0.50	0.9	-
G035.14 - 00.76	35.14	-0.76	35.2	5.00	4.92	35.22	-0.78	0.31	0.22	-11	0.20	2.36	59.3	1.90	2.9	Y
G034.24 + 00.14	34.24	0.14	57.8	5.98	4.81	34.19	0.05	0.50	0.41	-3	0.52	1.46	80.5	3.15	4.0	-
G019.94 - 00.81	19.94	-0.81	42.9	2.81	4.58	19.97	-0.80	0.42	0.18	-7	0.22	1.76	32.1	1.00	1.6	Y
G023.44-00.21	23.44	-0.21	101.1	5.75	4.40	23.36	0.02	0.64	0.48	29	0.63	1.65	63.2	3.71	3.1 5	-
G038.94-00.46	38.94	-0.46	41.6	2.97	4.33	39.01	-0.51	0.36	0.28	-10	0.23	1.90	31.8	1.02	1.6 🟹	-
G023.44-00.21	23.44	-0.21	103.7	3.44	4.23	23.55	-0.27	0.35	0.23	28	0.12	2.13	51.7	0.49	2.5	-
G030.79-00.06	30.79	-0.06	94.7	6.12	4.23	30.86	-0.04	0.39	0.28	66	0.32	2.24	79.5	2.68	3.9	-
G030.29-00.21	30.29	-0.21	104.5	3.01	3.92	30.36	-0.18	0.39	0.23	66	0.26	1.66	40.0	0.98	2.0	-
G053.14 + 00.04	53.14	0.04	22.0	2.39	3.88	53.15	0.09	0.42	0.26	74	0.29	2.01	26.8	0.93	1.3	-
G022.44 + 00.34	22.44	0.34	84.5	2.81	3.62	22.51	0.30	0.41	0.23	32	0.14	1.52	29.0	0.42	1.4	-
G024.49 + 00.49	24.49	0.49	102.4	5.24	3.58	24.48	0.30	0.52	0.32	8	0.46	1.46	67.8	2.21	3.3	-
G049.39-00.26	49.39	-0.26	50.9	3.54	3.54	49.44	-0.23	0.30	0.18	63	0.15	1.93	54.1	0.90	2.7	-
G019.39-00.01	19.39	-0.01	26.7	3.88	3.48	19.53	0.02	0.42	0.26	-2	0.31	1.73	39.0	2.00	1.9	-
G034.74-00.66	34.74	-0.66	46.7	4.33	3.46	34.88	-0.63	0.42	0.34	51	0.34	1.91	35.3	2.27	1.7	Y
G023.04-00.41	23.04	-0.41	74.3	4.20	3.40	23.07	-0.45	0.50	0.31	7	0.45	1.54	45.9	2.31	2.3	-
G018.69-00.06	18.69	-0.06	45.4	3.86	3.33	18.77	-0.13	0.26	0.18	-22	0.13	1.87	32.8	0.85	1.6	-
G018.19-00.31	18.19	-0.31	50.1	4.15	3.29	18.20	-0.44	0.39	0.27	89	0.27	1.89	52.5	1.52	2.6	х
G025.64 - 00.11	25.64	-0.11	93.9	2.78	3.21	25.67	-0.26	0.36	0.30	12	0.29	1.64	24.8	1.06	1.2	Y
$G024.79 \pm 00.09$	24.79	0.09	110.4	3.25	3.17	24.62	0.17	0.48	0.37	4	0.48	1.50	50.3	1.79	2.5	-

Table 2: Properties of the molecular clouds identified in the GRS.


6 Molecular Cloud Information

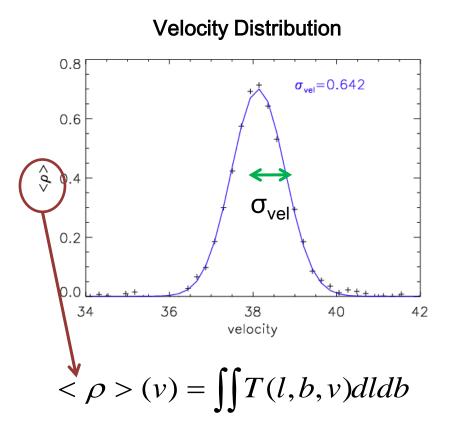
We select 6 molecular clouds from the cloud information by Rathborne et. al. (2009)

 \rightarrow Consideration : resolution limits, velocity profile, more simple structure


Name	longitude	latitude	velocity	Δ	Δb	Δv
A2224	23.04	-0.41	74.30	0.50	0.31	7.20
A2426	25.64	-0.11	93.90	0.36	0.30	3.78
A3032	31.49	0.39	24.60	0.51	0.41	7.52
A3236	34.24	0.14	57.80	0.30	0.41	5.98
A4446	44.59	-0.41	61.00	0.45	0.45	7.59
A4850	49.44	-0.06	62.00	0.54	0.39	3.75

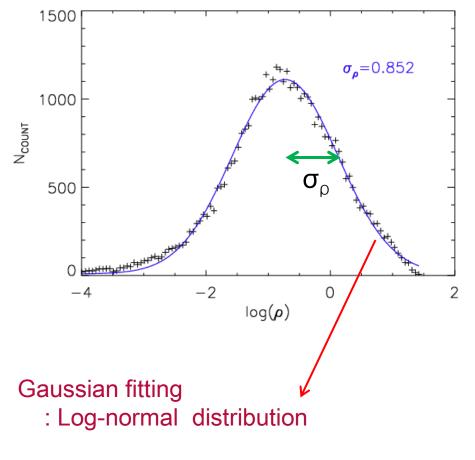
Examples of well defined molecular clouds

I – b diagram

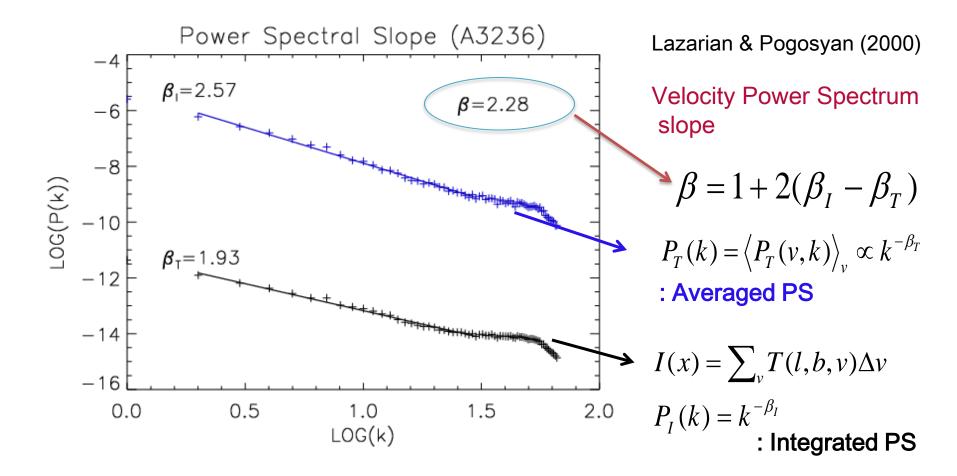

I – v diagram

I – b diagram

I – v diagram

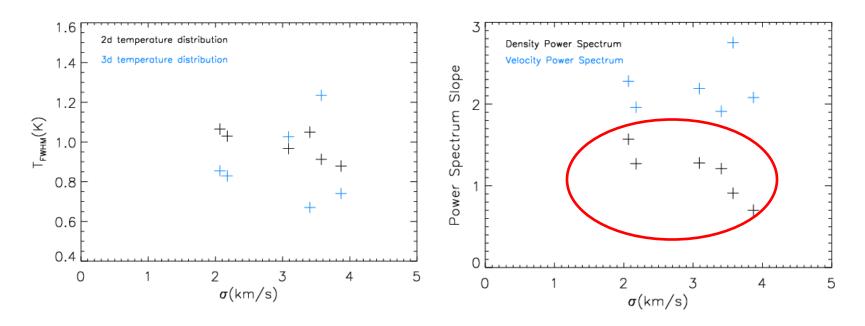

Density & Velocity Distribution of each MC

Integrated intensity along all of the Galactic longitude and latitude


$$\sigma_{vel}$$
 = velocity width = fcn(Ms)

Density Distribution in (I,b,v) space

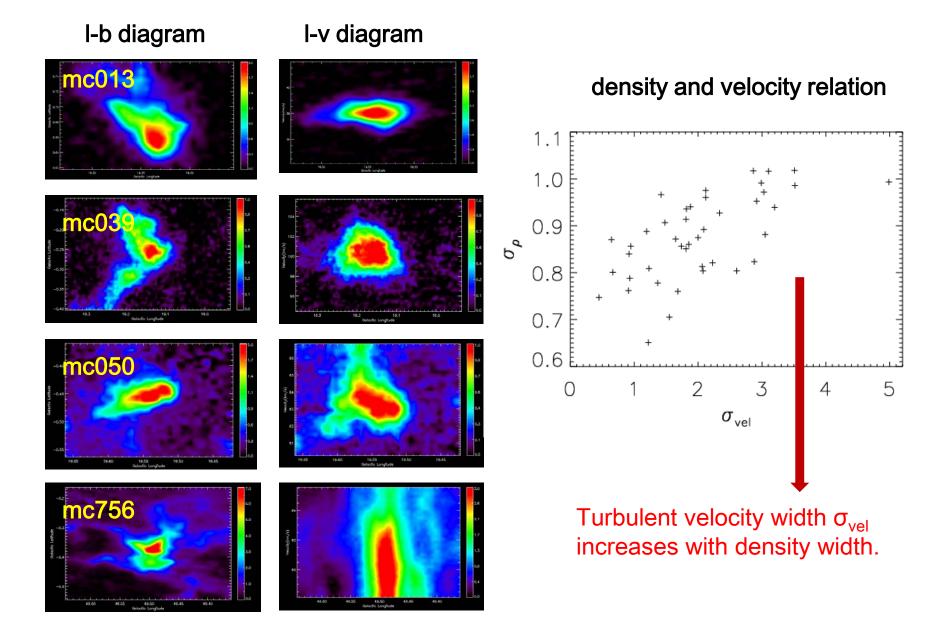
Density PDFs are consistent with numerical simulation of MHD turbulence


Power Spectrum on VCA method

Integrated Power spectrum is related with the density power spectrum

$$\beta_{\rho} \sim \beta_I - 1$$

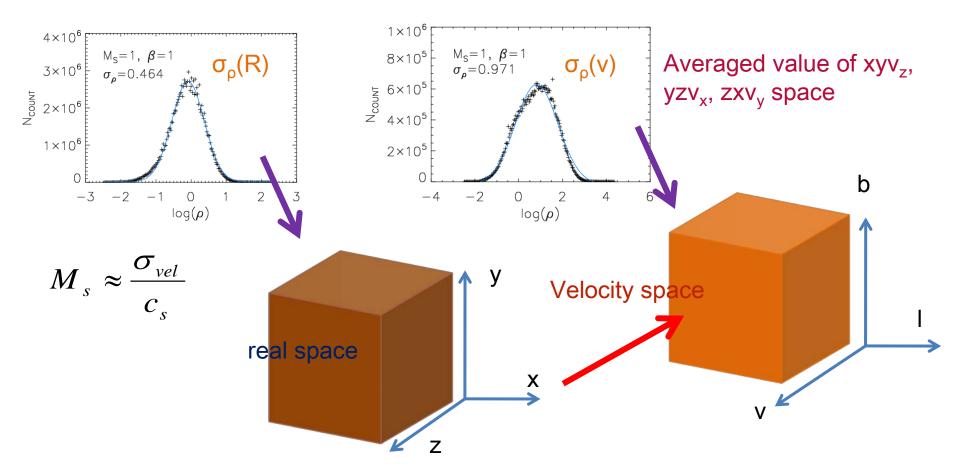
Properties of Turbulence in 6 MCs

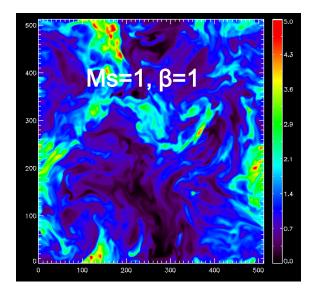


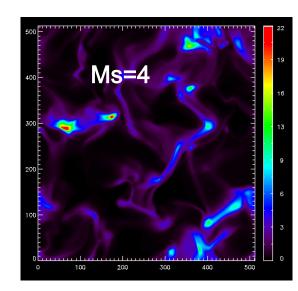
- σ = Velocity width = V_{FWHM}/2(2ln2)^{1/2} is is related with sonic Mach number
- Left : Velocity width & Density width \rightarrow correlation ?

Right : Velocity width & Density, Velocity Power Spectrum Slopes → Reasonable correlation between density power spectrum and velocity profile

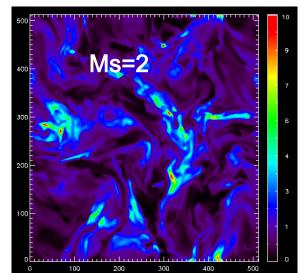
$$<\beta>=2.20$$

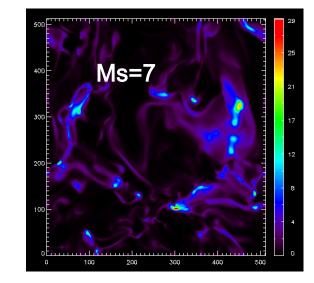

Properties of Turbulence in 50 MCs


MHD Turbulence Simulations

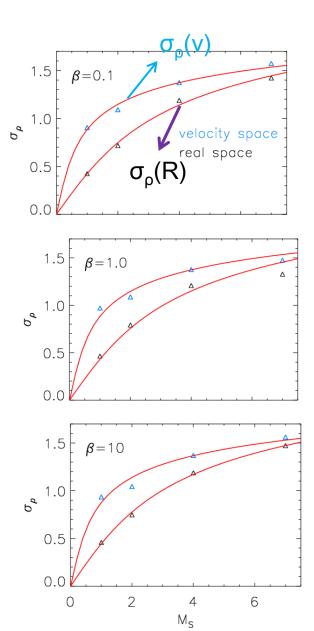

(Kim et. al 1999). 3-dimensional MHD simulation based on TVD scheme

512³ cube, isothermal gas Various Mach number (Ms = 1, 2, 4, 7) & Magnetic field (β = 0.1, 1, 10)


Density Images of MHD Turbulence Simulations

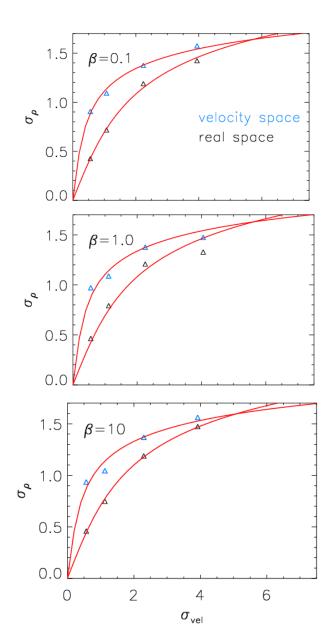


$$\beta = \frac{P_g}{P_B} = 1$$


Saturated Time

Supersonic turbulence ↓ Dense core formation ↑

$\sigma_{\rho}(R)$ and $\sigma_{\rho}(v)$ in MHD turbulence simulation

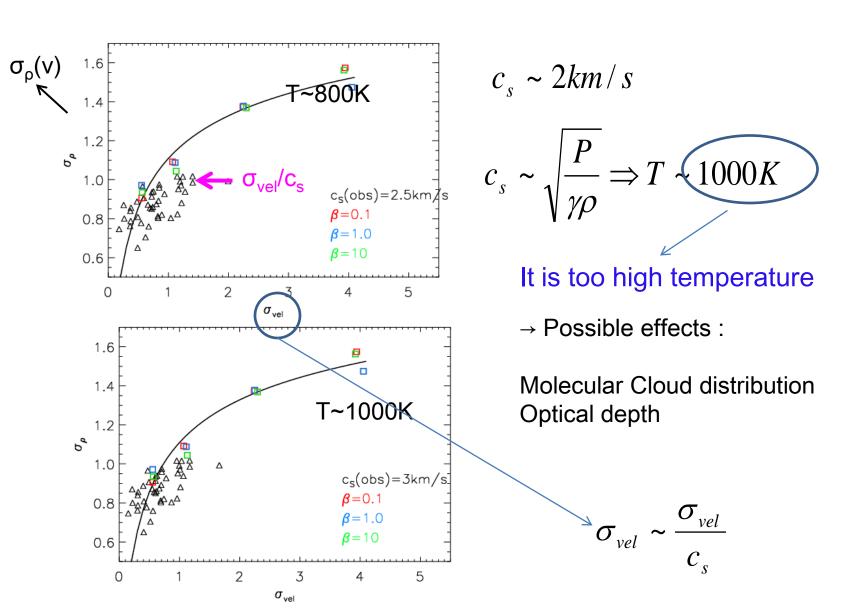

$$\sigma_{\rho} = a \sqrt{\ln(1 + b^2 M_s^2)}$$
 $a \sim 1.0, b \sim 0.5$

 $\beta = 0.1$ $\sigma_{\rho}(R) : a = 0.90, b = 0.50$ $\sigma_{\rho}(v) : a = 0.65, b = 2.32$

 $\beta = 1.0$ $\sigma_{\rho}(R) : a = 0.90, b = 0.51$ $\sigma_{\rho}(v) : a = 0.65, b = 2.31$

 $\beta = 10$ $\sigma_{\rho}(R) : a = 0.90, b = 0.53$ $\sigma_{\rho}(v) : a = 0.65, b = 2.27$

$\sigma_{\rho}(R)$ and $\sigma_{\rho}(v)$ in MHD turbulence simulation


$$\sigma_{\rho} = a \sqrt{\ln(1 + b^2 \sigma_{vel}^2)}$$

 $\begin{array}{l} \beta = 0.1 \\ \sigma_{\rho}(R) : a = 0.90, \ b = 0.90 \\ \sigma_{\rho}(v) : a = 0.65, \ b = 4.20 \end{array}$

$$\beta = 1.0$$

 $\sigma_{\rho}(R) : a = 0.90, b = 0.90$
 $\sigma_{\rho}(v) : a = 0.65, b = 4.12$

$$\beta = 10$$

 $\sigma_{\rho}(R) : a = 0.90, b = 0.92$
 $\sigma_{\rho}(v) : a = 0.65, b = 4.01$

Comparison of Observation and Simulation

Conclusion

Observation :

Molecular Clouds in GRS survey :

- complex and turbulent structures.
- Statistical analysis : log-normal density distribution
- correlation existence between the density PDF, velocity width, PS

✤ Simulation :

3-dimensional MHD turbulence simulation

- depends on the sonic Mach number
- conversion the real space into velocity space
- Comparison of observation & simulation :
 - Cs (observed MCs) : 2~3 km/s
 - Temperature of MCs ~ 1000 K
 - consideration of effects for the spatial distribution, optical depth etc.